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Constant-Cutoff Approach to Meson-Hyperon 
Couplings 
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The kaon coupling constants at hyperon-nucleon vertices and the pion coupling 
constants at hyperon-hyperon vertices are calculated in the framework of the 
constant-cutoff approach to the CHK bound-state model of hyperons, where the 
positive-parity hyperons such as A, E, and E* = ~(1385) are the P-wave bound 
states of an antikaon and the SU(2) Skyrme soliton, while A* = A(1405) is the 
S-wave bound state. Meson coupling constants are defined as matrix elements 
of the meson-source terms between two single-baryon states following the method 
developed for resolving the Yukawa coupling problem in the SU(2) Skyrme 
soliton model. The magnitudes of the meson coupling constants are found 
to be close to those obtained using the complete Skyrme model and the 
phenomenological values. 

1. I N T R O D U C T I O N  

It was shown by Skyrme (1961, 1962) that baryons can be treated as 

solitons of  a nonl inear  chiral theory. The original  Lagrangian of the chiral 

SU(2) or-model is 

= - i6  Tr O~,U O~U + (1.1) 

where 

2 
U = ~ (or + i ' r ' ~ )  (1.2) 

is a uni tary operator ( U U  + = l)  and F~ is the pion-decay constant. In (1.2) 
or = or(r) is a scalar meson field and ~ = ~ ( r )  is the pion-isotriplet.  
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The classical stability of the soliton solution to the chiral o'-model 
Lagrangian requires the additional ad hoc term, proposed by Skyrme (1961), 
to be added to (1.1) 

1 
"~Sk = 32e 2 Tr[U+O~U, U+O~U] 2 (1.3) 

with a dimensionless parameter e and where [A, B] -- AB - BA. It was 
shown by several authors (Adkins et al., 1983; Adkins and Nappi, 1984; for 
an extensive list of other references see Holzwarth and Schwesinger, 1986; 
Nyman and Riska, 1990) that, after the collective quantization using the 
spherically symmetric ansatz 

U0(r) -- exp[i-t. ~F(r)], ~ -- r/r (1.4) 

the chiral model, with both (1.1) and (1.3) included, gives good agreement 
with experiment for several important physical quantities. Thus it should be 
possible to derive the effective chiral Lagrangian, obtained as a sum of (1. l) 
and (1.3), from a more fundamental theory like QCD. On the other hand it 
is not easy to generate a term like (1.3) and give a clear physical meaning 
to the dimensionless constant e in (1.3) using QCD. 

Mignaco and Wulck (1989) (MW) indicated therefore the possibility to 
build a stable single-baryon (n -- 1) quantum state in the simple chiral theory 
with the Skyrme stabilizing term (1.3) omitted. MW showed that the chiral 
angle F(r) is in fact a function of a dimensionless variable s -- lx"(0)r, where 
• is an arbitrary dimensional parameter intimately connected to the usual 
stability argument against the soliton solution for the nonlinear or-model 
Lagrangian. 

Using the adiabatically rotated ansatz U(r, t) = A(t)Uo(r)A+(t), where 
U0(r) is given by (1.4), MW obtained the total energy of the nonlinear tr- 
model soliton in the form 

-tr 1 1 [X"(0)] 3 
E = -~ F 2 ~ a + 2 �88 J(J + 1) (1.5) 

where 

a=Io[ls2(d~2~ds] + 8  sinZ(~ ~ ) ]  dr 

b =  ds-~-s  sin 2 ~ 

and o~(s) is defined by 

F(r) = F(s) = -n~r +-}~(s) 

(1.6) 

(1.7) 

(1.8) 
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The stable minimum of the function (1.5) with respect to the arbitrary dimen- 
sional scale parameter • is 

4 [ 3 ( 4 ) 2 a 3  ~ -11'4 
E = F,  J(J + l ) J  (1.9) 

Despite the nonexistence of the stable classical soliton solution to the 
nonlinear or-model, it is possible, after the collective coordinate quantization, 
to build a stable chiral soliton at the quantum level, provided that there is a 
solution F = F(r) which satisfies the soliton boundary conditions, i.e., F(0) 
= - n ~ ,  F(~) = 0, such that the integrals (1.6) and (1.7) exist. 

However, as pointed out by Iwasaki and Ohyama (1989), the quantum 
stabilization method in the form proposed by MW is not correct, since in 
the simple o--model the conditions F(0) = -nar  and F(oo) = 0 cannot be 
satisfied simultaneously. In other words, if the condition F(0) = -~r is 
satisfied, Iwasaki and Ohyama obtained numerically F(oo) --~ -ar/2, and the 
chiral phase F = F(r) with correct boundary conditions does not exist. 

Iwasaki and Ohyama also proved analytically that both boundary condi- 
tions F(0) = -nar  and F(oo) = 0 cannot be satisfied simultaneously. Introduc- 
ing a new variable y = llr into the differential equation for the chiral angle 
F = F(r), we obtain 

d2F 1 
dy~ y2 sin 2F (1.10) 

There are two kinds of asymptotic solutions to equation (1.10) around the 
point y = 0, which is called a regular singular point if sin 2F ~ 2F. These 
solutions are 

m'tr 
F(y) = ---f- + cy 2, m = even integer (1.11) 

mar [_~__~ ] 
F(y) = -~-  + , ~  cos ln(cy) + ~ , m = odd integer(1.12) 

where c is an arbitrary constant and ~ is a constant to be chosen appropriately. 
When F(0) = -nar  then we want to know which of these two solutions are 
approached by F(y) when y --~ 0 (r --~ co). In order to answer that question 
we multiply (1.10) by y2F'(y), integrate with respect to y from y to ~, and 
use F(0) = -n~r. Thus we get 

y2F'(y) + 2y[F'(y)12dy = 1 - cos[2F(y)] (1.13) 

Since the left-hand side of (1.13) is always positive, the value of F(y) is 
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always limited to the interval n'tr - "tr < F(y)  < nqr + "rr. Taking the limit 
y ---) 0, we find that (1.13) is reduced to 

o~2y[F'(y)] 2 dy = 1 - ( - 1 ) "  (1.14) 

where we used (1.11)-(1.12). Since the left-hand side of (1.14) is strictly 
positive, we must choose an odd integer m. Thus the solution satisfying F(0) 
= -n-rr approaches (1.12) and we have F(~) :/: 0. The behavior of the 
solution (1.11) in the asymptotic region y --) ~ (r ---) 0) is investigated by 
multiplying (1.10) by F' (y ) ,  integrating from 0 to y, and using (1.11). The 
result is 

[F,(y)] 2 _ 2 sin2F(y) f~ 2 sin2F(y) 
y2 + y3 dy (1.15) 

From (1.15) we see that F ' ( y )  ---) const as y ~ r which means that F(r) ~-- 
l l r  for r ---) 0, This solution has a singularity at the origin and cannot satisfy 
the usual boundary condition F(0) = -n'rr. 

In Dalarsson (1991a, b, 1992), I suggested a method to resolve this 
difficulty by introducing a radial modification phase q~ = q~(r) in the ansatz 
(1.4) as follows: 

U(r) = exp[i 'r .roF(r) + iq~(r)], r0 = f i r  (1.16) 

Such a method provides a stable chiral quantum soliton, but the resulting 
model is an entirely noncovariant chiral model, different from the original 
chiral tr-model. 

In the present paper we use the constant-cutoff limit of the cutoff quanti- 
zation method developed by Balakrishna et al. (1991) (see also Jain et al., 
1989) to construct a stable chiral quantum soliton within the original chiral 
tr-model. Then we apply this method to calculate the kaon coupling constants 
at hyperon-nucleon vertices and the pion coupling constants at hyperon- 
hyperon vertices in the framework of the constant-cutoff approach to the 
CHK bound-state model of hyperons, where the positive-parity hyperons 
such as A, E, and E* = E(1385) are the P-wave bound states of an antikaon 
and the SU(2) Skyrme soliton, while A* = A(1405) is the S-wave bound 
state. Meson coupling constants are defined as matrix elements of the meson- 
source terms between two single-baryon states following the method devel- 
oped for resolving the Yukawa coupling problem in the SU(2) Skyrme soliton 
model (Hayashi et al., 1992; Saito and Uehara, 1995). The magnitudes of 
the meson coupling constants are found to be close to those obtained using 
the complete Skyrme model (Kondo et al., 1996) and the phenomenological 
values (Lee et al., 1994, 1995). 
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The reason why the cutoff approach to the problem of the chiral quantum 
soliton works is connected to the fact that the solution F = F(r) which 
satisfies the boundary condition F(oo) = 0 is singular at r = 0. From the 
physical point of view the chiral quantum model is not applicable to the 
region about the origin, since in that region there is a quark-dominated bag 
of the soliton. 

However, as argued in Balakrishna et al. (t991), when a cutoff r is 
introduced, then the boundary conditions F(e) = -nxr  and F(oo) = 0 can be 
satisfied. In Balakrishna et al. (1991) an interesting analogy with the damped 
pendulum is discussed, showing clearly that as long as ~ > 0, there is a 
chiral phase F = F(r) satisfying the above boundary conditions. The asymp- 
totic forms of such a solution are given by Eq. (2.2) in Balakrishna et aL 
(1991). From these asymptotic solutions we immediately see that for ~ ---> 0 
the chiral phase diverges at the lower limit. 

Different applications of the constant-cutoff approach have been dis- 
cussed in Dalarsson (1993, 1995a-d, 1996a-c, 1997). 

2. CONSTANT-CUTOFF STABILIZATION 

The chiral soliton with baryon number n = 1 is given by (1.4), where 
F = F(r) is the radial chiral phase function satisfying the boundary conditions 
F(0) = - ' t r  and F(oo) = 0. 

Substituting (1.4) into (1.1), we obtain the static energy of the chiral 
baryon 

~ ] M = -~ F 2 dr + 2 sinZF 
(0 L \ d r }  

(2.1) 

In (2.1) we avoid the singularity of the profile function F = F(r) at the origin 
by introducing the cutoff ~(t) at the lower boundary of the space interval r 

[0, oo], i.e., by working with the interval r ~ [~, oo]. The cutoff itself is 
introduced, following Balakrishna et al. (1991), as a dynamic time-depen- 
dent variable. 

From (2.1) we obtain the following differential equation for the profile 
function F = F(r): 

dr rz = sin 2F (2.2) 

with the boundary conditions F(r = -'rr and F(~) = 0, such that the correct 
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soliton number is obtained. The profile function F = F[r; e(t)] now depends 
implicitly on time t through ~(t). Thus in the nonlinear o'-model Lagrangian 

L = i 6  Tr(0r O~U +) d3x (2.3) 

we use the ans~itze 

U(r, t) = A(t)Uo(r, t)A§ U+(r, t) = A( t )U~( r ,  t)A§ (2.4) 

where 

Uo(r, t) = exp{ia', roF[r; e(t)]} (2.5) 

The static part of the Lagrangian (2.3), i.e., 

L = 16 J Tr(VU. VU § d3x = - M  (2.6) 

is equal to minus the energy M given by (2.1). The kinetic part of the 
Lagrangian is obtained using (2.4) with (2.5) and it is equal to 

L = -~- Tr(0oU OoU § d3x = bx  2 Tr[0oA OoA § + c[~(t)l 2 (2.7) 

where 

. ( y)2 b = - -  F 2 sin2F y2 dy, c = -~- F~  y2 y2 dy (2.8) 

with x(t) = [e(t)] 3/2 and y = r/e. On the other hand, the static energy functional 
(2.1) can be rewritten as 

M = ax m, a = -~ F~ + 2 sin2F dy (2.9) 

Thus the total Lagrangian of the rotating soliton is given by 

L = cYc 2 - ax  ~J3 + 2bx26t~6t ~ (2.10) 

where Tr(O0A 0o A+) = 26t~dt v and cry (v = 0, 1, 2, 3) are the collective 
coordinates defined as in Bhaduri (1988). In the limit of a time-independent 
cutoff 0t ---> 0) we can write 

OL 6t ~ _ L ax  2r3 ax2/3 1 H = ~ = + 2bxZ6q,6t " = + 2bxZ J (J  + 1) (2.11) 

where (,12) = J ( J  + 1) is the eigenvalue of the square of the soliton laboratory 



Constant-Cutoff Approach to Meson-Hyperon Couplings 1215 

angular momentum. A minimum of (2.11) with respect to the parameter x 
is reached at 

[2 ab ]-3/8 [2  
x = J(J + l )J  ~ e- l  = ab 3 TM J(J + 1)J (2.12) 

The energy obtained by substituting (2.12) into (2.11) is given by 

4 I-3 a 3 -]1/4 
E = -~ [~ -~ J(J + 1)] (2.13) 

This result is identical to the result obtained by Mignaco and Wulck, which 
is easily seen if we rescale the integrals a and b in such a way that a --~ ('tr/ 
4)F2a and b ~ Orl4)F2b and introducef~ = 2-3/2F~. However, in the present 
approach, as shown in Balakrishna et al. (1991), there is a profile function 
F = F(y) with proper soliton boundary conditions F(1) = - ' t r  and F(~) = 
0 and the integrals a, b, and c in (2.9)-(2.10) exist and are shown in Balak- 
rishna et al. (1991) to be a = 0.78 GeV 2, b = 0.91 GeV 2, and c = 1.46 
GeV 2 for F~ = 186 MeV. 

Using (2.13), we obtain the same prediction for the mass ratio of the 
lowest states as Mignaco and Wulck (1989), which agrees rather well with 
the empirical mass ratio for the A-resonance and the nucleon. Furthermore, 
using the calculated values for the integrals a and b, we obtain the nucleon 
mass M(N) = 1167 MeV, which is about 25% higher than the empirical 
value of 939 MeV. However, if we choose the pion-decay constant equal to 
F~r = 150 MeV, we obtain a = 0.507 GeV 2 and b = 0.592 GeV 2, giving 
exact agreement with the empirical nucleon mass. 

Finally, it is of interest to know how large the constant cutoffs are for 
the above values of the pion-decay constant in order to check if they are in the 
physically acceptable ballpark. Using (2.12), it is easily shown that for the 
nucleons (J = 1/2) the cutoffs are equal to 

~0.22 fm for F~ = 186 MeV 
= ~0.27 fm for F~ = 150 MeV (2.14) 

From (2.14) we see that the cutoffs are too small to agree with the size of 
the nucleon (0.72 fm), as we should expect, since the cutoffs rather indicates 
the size of the quark-dominated bag in the center of the nucleon. Thus we 
find that the cutoffs are of reasonable physical size. Since the cutoff is 
proportional to Fff l, we see that the pion-decay constant must be less than 
57 MeV in order to obtain a cutoff which exceeds the size of the nucleon. Such 
values of pion-decay constant are not relevant to any physical phenomena. 
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3. CHK LAGRANGIAN AND HAMILTONIAN IN THE 
CONSTANT-CUTOFF MODEL 

Callan and Klebanov (1985) showed that a good description of the 
hyperon spectrum in the Skyrme model (Skyrme, 1961, 1962) is obtained if 
the hyperons are treated as bound kaon-soliton systems. Callan et al. (1988) 
(CHK) successfully completed this program. The basic idea of their model 
is to treat strangeness separately from isospin in the Skyrme model, assuming 
that the vacuum is approximately SU(3)-symmetric, i.e., FK ~ F.,. The strange 
baryons are generated by binding kaons in the field of "rotating" SU(2) 
solitons. Since there is no static field associated with the strangeness number, 
it is essential in this picture that there exist bound states in the kaon-soliton 
complex giving rise to hyperons. CHK showed that such bound states exist. 
A remarkable property of the kaons in this model is that after quantization 
they look like s-quarks, due to topological effects. This leads to a spectroscopy 
of hyperons quite similar to that of quark models. 

In the CHK approach the kaon-soliton field is written in the form 

U = q/-~Ut~ff-U--~ (3.1) 

where U~ is the SU(3)-extension of the usual SU(2) skyrmion field used to 
describe the nucleon spectrum, and U~c is the field describing the kaons: 

[; UK=exp{i 23rz :]} 
The Lagrangian density for a bound kaon-soliton system in the simpli- 

fied Skyrme model, with the Skyrme stabilizing term (1.3) omitted, is given by 

F~ - F~ 
~CK=-~LrOCUOwU + + ~ ( m ~ +  2m 2) T r (U+  U + - 2 )  

+ ~ F2(m 2 - mR) Tr ks(U + U +) (3.3) 
At4 

where m~ and mK are pion and kaon masses, respectively. In (3.2) u~ is the 
usual SU(2)-skyrmion field, given by (1.4), and F = F(r) is a radial function 
which, for m~ = 0, satisfies the differential equation (2.2). The two-dimen- 
sional vector K in (3.2) is the kaon doublet 

[K-] 
K = KO , K + = [K- ~o1 (3.4) 
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In addition to the simplified Skyrme-model action obtained using the Lagran- 
gian density (3.3), the Wess-Zumino action in the form 

iNc I Swz = 240,rr 2 dSx e ~'~f~ Tr[U+O~U U+O~U U+O~U U+Of# U+O~U] 

(3.5) 

must be included in the total action of a kaon-soliton system. In (3.5), Arc 
is the number of colors in the underlying QCD. Using (3.3) and (3.5), we 
may write 

= ~CK "1- ~WZ = ~Sky + ~K + (~(K 3) (3.6) 

Using (1.2), we obtain 

~Sky = lCtiGifiry + At(xt, Ok~) (3.7) 

where At(xt, 0h, xt) is easily obtained from (3.3) and the metric Giy is given by 

qT i'rf j 
Gij = ~ij "~- - - ~  : ~ij "~- tanZF Firj (3.8) 

Furthermore, ~ r  is a bilinear in K § and K, given by 

"2-m2 ( 2(r~K+K ~s = (D~K)+(O~K) - mZK K+K + 1 - -~1 

1 Nc B~[K+(Dt,K ) _ (D~,K)+K ] (3.9) F20r K+K - i -~  

where 

De = 0r + V'0~ax (3.10) 

2i 1 
V - F~ 1 + 2tr/F~ "t x ~ (3.11) 

1 
- u~O us u+~Oau~) B~ 24,tr2 % ~ a  Tr(u+O~u~ + ~ (3.12) 

In order to obtain the expression for the Hamiltonian corresponding to the 
Lagrangian (3.9), we rewrite (3.9) as follows: 

~ r  = /(+K + K+(V.'/t + ik)K + K+(Ct �9 V + - ik ) s  - i X - ~  + ~0 
(3.13) 
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where ~o does not include any derivatives of kaon or pion fields, and we have 

Nc sin2F dF 
h ( r ) =  2,rr2F ~ r2 dr (3.14) 

X = 2K+[XV - XJ(V'Oj't't)lK + XJ(OjK+K- K+OjK) (3.15) 

In (3.15) kJ is defined using 

Nc Bj kJ.~t = ~ (3.16) 

From (3.13) it is now possible to derive the expression for the total 
Hamiltonian, given by 

where 

(3.17) 

~r = ( II+ + ihK+)( II - ikK) + (DjK)+(D:K) 

I OjxtaGabOjxtb]K+ K (3.19) + [ m 2 - m 2 ( 1 - ~ ) - F  2 
T 

~ r  = iPaGalXb - [(P~Ga~VbK)+( II - ikK) + h.c.] (3.20) 

with all fields defined in the laboratory system. The momentum fields P and 
H, conjugate to xt and K § respectively, are given by 

p ~  - m 

~Ae 
II - ,.;.+_~ - g + ikK + V. , i rK (3.22) 

)ot~ (x 

8Le 
~ r ~ ( x )  

- Gadirb - iXa + K+VaK + K*V+aK (3.21) 

Since the massive kaon fields do not contain the zero-mode, wave 
functions of the SU(2) skyrmion and pion fields are the total fields the 
canonical commutation relations between fields xt and K § and their respective 
momentum fields P and II are 

['rra(X, t), Pb(Y, t)]i G~bG(x -- y) 

[K+(x ,  t), IIi3(y, t)]i 8~13~(x - y)  

(3.23) 

(3.24) 

1 PiG:~'Pj + M,(~, bk~) (3.18) ~$ky  = 2 



Constant-Cutoff Approach to Meson-Hyperon Couplings 1219 

In order to calculate the kaon scattering amplitudes, we introduce the 
asymptotic kaon fields 

1 
K,~N(X) = ~ (27r)3/2 2,~k [b~(k)e -ik~ + a~+(k)e igx] (3.25) 

1 
K+IN(X) = ~k (2'n')3/2 2V~k [a~ + b+(k)eaX] (3.26) 

with tot = , f ~  + m 2. In (3.26) a~(k) and b~(k) are the annihilation operators 
of the antikaon and kaon fields of the in-state with isospin ot = 1/2 and - 1/2, 
respectively. The same forms are introduced for the out-states. The field 
Ko,(x) above is the interpolating field from the in-state to the out-state. The 
single-baryon state with definite spin, isospin, and momentum is described 
as the rotated and translated Skyrme soliton with a bound-state antikaon if 
the baryon carries strangeness. The Fock space is spanned by the in- and 
out-states composed of the in- and out-creation operators of the mesons acting 
on the single-baryon states. 

Following Kondo (1996), we also note that the single-baryon state is 
not an eigenstate of the Hamiltonian 

but we have 

with (Kondo, 1996) 

H = f d3x ~ = HSky "~ HK @ H~K 

(B(p) I HI B(q)) = EB(p) 8(p -- q) 

EB = MB + p2/(2Ma) + O(Nc 2) 

(3.28) 

(3.29) 

(3.30) 

4. KAON AND PION COUPLINGS TO POSITIVE-PARITY 
HYPERONS 

4.1. Kaon Couplings 

Using the LSZ reduction formula, we obtain the scattering amplitude 
for the process Ks(k) + N(p) --) K~0r + N(q): 

i(2~r)3 I dax ei~(N(q) l T(Jt~+ (x)J~(O)) T~N-)KN 

+ 8(x~ J~(0)] - i~8(x~ J~(0)] IN(p)) (4.1) 

where the factor of (2~) 3 is due to the s ingle-b~on state normalization. The 
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strangeness exchange scattering, i.e., the process A'~(k) + N(p) ---> ~rb(K) + 
Y(q), is given in terms of the meson-source terms by 

= i(2"rr)3 I d4x ei~(y(q) l T(Jg(X)Jr~(O)) T ~ N ~ y  

+ ~(X0)[Crb(X), Jr(0)] - itoK~(x~ Jff(0)] IN(p)) (4.2) 

In (4.1) and (4.2) the kaon and pion source terms are defined by 

Jr,(x) = / ( ~  + ( - V  2 + m2)K=(x) (4.3) 

J~d(x) : ~Ta + ( - v 2  -{'- m2)qra(X) (4.4) 

Using now the commutator i[HK, /(] with HK defined by (3.23) and 
neglecting the terms coming from the commutator i[Hsk~ /(] as the higher 
order terms, we obtain 

= --2i)k[( -- m2K -- ~ -  1 -- ~ -- - ~  OjqTaaabOJ'ITb g q- o j o J g  (4 .5)  

g = II - ihK (4.6) 

It should be noted that (4.5) is the equation of  motion of  K,, in the laboratory 
system. When we now calculate the matrix elements of the source terms 
between the hyperon and nucleon states, the kaon fields are transformed into 
fields defined in the intrinsic frame and the pion fields are reduced to the 
classical skyrmion fields as follows: 

Ks(x) = A~j ~ {bNjkN(r)e -i~'Nt + a~vjkCN(r)e -i~ } (4.7) 
N 

Ira(x) = Raj(t)'�89 sin F(Ix  - X(t)l), ro = f ir (4.8) 

tr(x) = �89 cos F( Ix - X(t) I ) (4.9) 

where F = F(r) is the profile function of  the skyrmion, X = X(t) are the 
translation coordinates of the center of the skyrmion, A~j (t) are the coordinates 
of the SU(2) isorotation, and Raj(t) are the coordinates of  the orthogonal 
rotation. In (4.7) N = {L, T, T3}, with L being the orbital angular momentum 
and T and T 3 being the quantum numbers of  T = L + x12, and aN and 1.o N 
(bN and CON) are the annihilation operator and energy of the kaon with quantum 
numbers N and strangeness S = - 1 (+  1), respectively. In the present paper 
we only consider the S = - 1 kaon mode, where the charge-conjugate eigen- 
mode is written as 

1. 1 I 
. . . .  r <r, r3 L, rs + : , : ,  1 

kgr(r) = r~rtr) L-(T,  TslL, 7"3 -~;~ ~,~ +-~}Y~,T3-t/2(0,~ r (4.10) 
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where YLM(0, d~) are the usual spherical harmonics. Using now (4.7)-(4.10), 
we can calculate the matrix elements of J~(0), being a function of ~(0) and 
K(0), between the (YI and IN) states: 

(Y(q) I J~[q'r(O), K(0)] I N(p)) 

- 1 1  (271.)3 d3r e~'r(YIAonCKn(r)lN) 

_ 1 (YIA~,~(k) IN) (4.11) 
(27r) 3 

where k = q - p, and 

with 

~ ( k )  = I d3r ea''~~ (4.12) 

~ ( r )  = ~ a~n(--tO2N -- V 2 + m~)k~(r) (4.13) 
N 

where, following Kondo et al. (1996), we neglect terms with A and )~, as 
they are of higher order in the N~ -I expansion, and where o) N is the actual 
bound-state energy. For the positive-parity hyperons we take L = 1 and T 
= 1/2, and obtain 

f + 2 + + 2 --3 ....... [ al/2N/~ Y~I a-I/2%]~ Y~*0 1 
~K(k) = i(to~ - to~) a r j l tKr)x l t r ) l  + /i v ,  -- ~+ /T v .  / 

Lt*l/2~/~ - z l 0  ~ t,_l/2~/~- Z l - l _ l  
(4.14) 

The hyperon states (A, E, and E*), denoted by I Y), and nucleon state, 
denoted by IN), are defined as in Adkins et al. (1983) and Adkins and 
Nappi (1984): 

I Y) = II,/3, J, '/3) 

1 , 2 ~ 1  
= ~ (J, J311, J3 - t ; ~ ,  t ) ~ / ~  (--1)t+13D~_t3g3_t(O)a+ 10) (4.15) 

t 

IN) = 1i3,J3) = ~ (-l)l/2+i3Dl-123,J3(O)lO) (4.16) 

where O denotes the three Euler angles of the isospin rotation, denoted here 
by A~n = D~/~(O). Thus we finally obtain 

I: (YIA,,,~,K(k)IN} = iAyN(~-k) " / ~  (mE - ~ )  dr r2j,(kr)kt(r) --/-  

(4.17) 
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The coefficients ArN can be found in Table I. Fixing the common mass 
scale at mr  for kaon couplings, we obtain the pseudovector coupling constant 
frmc/mK as follows: 

ioo 1 (tol - ~o 2) dr  r2jl(kr)kl(r) f r N x _  ,]~-~Arlv lim 
mK r162 

(4.18) 

since we have the pole at ok = M r  - MN, that is, (ok --> ~ol at the leading 
order in the N~ -~ expansion. In (4.18), ~ is the constant cutoff defined as in 
(2.12). The pseudoscalar coupling G ~ r  is given by 

MN + Mr  
G m t r  frmr (4.19) 

mK 

The numerical results for the pseudovector coupling constants are com- 
pared to the results obtained using the complete Skyrme model (CSM) (Kondo 
et al., 1996) and to the empirical values (Kondo et al., 1996) in Table I. 

From Table I we see that there is good agreement between the present 
results and those obtained using the complete Skyrme model (Kondo et al., 
1996) and the available empirical values used in Kondo et aL (1996). 

4 .2 .  P i o n  C o u p l i n g s  

The pion source term is derived by calculating the second time deriva- 
tives of the pion fields qt, which are obtained from the commutator with Hsky 
as follows: 

~ta = --G~b 1 8 ~ ( ~ ,  Oct) + (~(~2) (4.20) 
blrb 

Table I. Coefficients Arn and Pseudovector Coupling Constants frmc 

IfrtcKIq~-~l 
(CSM) 

Am IfrNr/4~-~l Set P Set IP Empirical'* 

A~ l> - A ~  l/v/2 1.07 1.35 0.92 

A § v ---> A~-n -1/3 0.39 0.64 0.43 
A~ ~ --~ A,~ ~ - 1l(3 v/2) 0.28 0.45 0.31 

A~,+p --> A.~,-, -2/,f3 1.81 2.21 1.50 
Ax.~ ---> Ax .~  -,r  1.16 1.55 1.06 

0.89 • 0.10, 
0.94 • 0.03 

<0.43 • 0.07, 
0.25 • 0.05 

a Kondo et al. (1996). 
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where "ffa are replaced by the classical fields of order Nc u2, ~Al/~'trb = 0 is 
the classical equation of  motion, and the terms with xt 2 are of order Nc 3n and 
are therefore neglected. 

Thus the leading source term of the pion for the positive-parity hyperons 
is given by 

Jg(O) = (-172 + m2)Tra(O) (4.21) 

and the pion coupling constant is written as 

(Y(q) I]~(k) I Y(p)) = (Y(q) I Ra]~7(k) I Y(p)) (4.22) 

where 

3#(k)  = f d3r e'~'rj~(r), ~]~(k) = f d3r e'X'r~]~(r) (4.23) 

and the rotational matrix Raj = 1Tr(TaA'rjA +) is represented by 
(-1)aDl~,j (O), being consistent with Acq 1/2 = D~,j(O) used in the case of kaon 
couplings. In (4.22) we have 

~7(k) = i ~ ~ d3r j,(kr) -~ sin F(r) (4.24) 

and 

Y(q) = Y' = E(q), Y(p) = Y = E(p) or A(p) (4.25) 

Setting the mass scale to the pion mass m~ for the pion coupling con- 
stants, we define the pion coupling constant as 

frr~, 1 f 
- 4 ~ A r r  lim - to E 1 dr r2jl(kr) sin F(r) (4.26) 

m~ =k--~O k J, 

since the Born term has the pole at tOk = Mr - Mr, being zero at the leading 
order. In (4.26), similarly to (4.18), ~ is the constant cutoff defined as in (2.12). 

The numerical results for the pseudovector coupling constants are com- 
pared to the results obtained using the complete Skyrme model (CSM) (Kondo 
et aL, 1996) and to the empirical values (Kondo et al., 1996) in Table II. 

Table II. Coefficients A r t  and Pseudovector Coupling Constantsfrr,  

Ifry~,/4fi~l (CSM) i f ry jq~I~ I 
YY' A r t  Ifr, r~lx/~-~l Set I a Set IP EmpificaP 

~A 1/3 0.24 0.25 0.22 0.20 -4- 0.01 
~ 1/3 0.23 0.25 0.22 0.21 _+ 0.02 
'E*A - l/v/3 0.42 0.43 0.38 0.35 
~*X 1/(24r3) 0.21 0.21 0.19 0.19 

a Kondo et al. (1996). 
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From Table II we see that there is a good agreement between the present 
results and those obtained using the complete Skyrme model (Kondo et al., 
1996) and the available empirical values used in Kondo et al. (1996). It 
should be noted that (see Table III in Kondo et al., 1996) the empirical values 
for E*A and E*E are calculated using the formula for the width of the 
corresponding decay channel. 

5. CONCLUSIONS 

The present paper has shown the possibility of using the Skyrme model 
for the calculation of the kaon coupling constants at hyperon-nucleon vertices 
and the pion coupling constants at hyperon-hyperon vertices in the framework 
of the constant-cutoff approach to the CHK bound-state model of hyperons, 
without use of the Skyrme stabilizing term, being proportional to e -2, which 
makes practical calculations more complicated and requires some low-energy 
approximations which otherwise are not needed to obtain relatively accu- 
rate results. 

In the present paper the positive-parity hyperons such as A, ~, and ~* 
= E(1385) are the P-wave bound states of an antikaon and the SU(2) Skyrme 
soliton, while A* = A(1405) is the S-wave bound state. Meson coupling 
constants are defined as matrix elements of the meson-source terms between 
two single-baryon states following the method developed for resolving the 
Yukawa coupling problem in the SU(2) Skyrme soliton model (Hayashi et 
al., 1992; Saito and Uehara, 1995). 

For such a simple model, with only one arbitrary dimensional constant 
F~, we have shown that the magnitudes of the meson coupling constants are 
found to be close to those obtained using the complete Skyrme model (Kondo 
et al., 1996) and the phenomenological values (Lee et al., 1994, 1995). 
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